If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+43x-44=0
a = 15; b = 43; c = -44;
Δ = b2-4ac
Δ = 432-4·15·(-44)
Δ = 4489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4489}=67$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-67}{2*15}=\frac{-110}{30} =-3+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+67}{2*15}=\frac{24}{30} =4/5 $
| 36x+9=48 | | 6x-(-1)-5x+4-(-2x)=11 | | 1/2x3/4= | | 6(6x-6)^2=x | | 4=2.2x=-3.7 | | 16x-19x=-15 | | (a+5)2=1 | | 5(3x+9)=26.25 | | -15=3X+1+2x | | -14x-7=15 | | -x/3+5=-2x+12 | | 3x+6+3x+18=180 | | 1/2n+9/4=7/4 | | 24×9=x/3 | | -x/3+5=-2x+20 | | -8-(-5x)+3x-2=13 | | 3x-12*2x+6=180 | | 3x-12+2x+6=180 | | -2(x-14)=-20 | | (5/8)x+2.5=(3/8)x+1.5+(1/4)x | | 0=3t^2-16t+@6 | | 6=3x=5x-10x+12 | | 4x-28+4x+6=180 | | 4(3x+2)=3(6x-4) | | 4x-51=7x | | (2/3)x+(2/3)+(1/5)x=(2/3)x | | 7m+10=-46 | | 6x-6+4=8x-6 | | 2,3y+3,2y-y=2,1+1,3y+1,1 | | 14+21x=-16+4x | | 7m+10=-60 | | 9-7a=-a^2-11 |